منتدى علوم المنصورة
منتدى علوم المنصورة

اهلا بك يا زائر لديك 16777214 مساهمة
 
الرئيسيةالبوابةس .و .جبحـثالتسجيلدخول

شاطر | 
 

 تاريخ الرياضيات

استعرض الموضوع السابق استعرض الموضوع التالي اذهب الى الأسفل 
كاتب الموضوعرسالة
لوليتا
مشرفه منتدي الرياضيات

مشرفه منتدي الرياضيات


عدد المساهمات : 1378
العمر : 26
العمل/الترفيه : مش فى الدنيا!!!!
المزاج : ------------
الاوسمه :
الألتزام بقوانين المنتدى :
الكليه : العلوم
الفرقه والقسم : وأخيرا فى البكالوريوس

مُساهمةموضوع: تاريخ الرياضيات   الخميس أكتوبر 07, 2010 11:32 pm

تاريخ الرياضيات

كان الكتبة البابليون منذ أكثر من 3000 عاما يمارسون كتابة الأعداد وحساب الفوائد ولاسيما في الأعمال التجارية ببابل. وكانت الأعداد والعمليات الحسابية تدون فوق ألواح الصلصال بقلم من البوص المدبب. ثم توضع في الفرن لتجف. وكانوا يعرفون الجمع والضرب والطرح والقسمة. ولم يكونوا يستخدمون فيها النظام العشري المتبع حاليا مما زادها صعوبة حيث كانوا يتبعون النظام الستيني الذي يتكون من 60 رمزا للدلالة علي الأعداد من 1-60. وطور قدماء المصريين هذا النظام في مسح الأراضي بعد كل فيضان لتقدير الضرائب. كما كانوا يتبعون النظام العشري وهو العد بالآحاد والعشرات والمئات. لكنهم لم يعرفوا الصفر. لهذا كانوا يكتبون 600 بوضع 6 رموز يعبر كل رمز على 100.

الرّياضيّات في علوم المادّة

يبقى علم الفيزياء علماً استقرائيّاً يعتمد في الأساس على مراقبة الظّواهر الطّبيعيّة واختبارها، ويستطيع في أقصى حدّه التّعبير عن القوانين بلغة رياضيّة، فتكون الرّياضيّات في مجال علوم المادّة لغة تعبير أكثر منها منهج اكتشاف، وهناك حالات عديدة كانت الرّياضيّات فيها أسلوب اكتشاف وبرهنة. فقد اكتشف "ليفيرييه" (أحد العلماء) بالحسابات الرّياضيّة مكان كوكب نبتون وبُعده وكتلته قبل التّحقّق من وجوده الفعلي بالرّصد وكان الفكر الرّياضي عند "نيوتن" و"أينشتاين" سابقاً إلى حدّ كبير على الاختبار، لكن يبقى الاختبار الضّامن الأخير لصحّة الاكتشافات في علوم المادّة. أمّا فرضيّة تحويل الكون برمّته إلى معادلة رياضيّة كبرى فيبقى حلماَ راود أذهان الفلاسفة والعلماء أمثال "ديكارت"، ولكن هذا الهدف الكبير يبقى مجرّد فرضيّة دونها صعوبات وتجاذبات علميّة وفلسفيّة. فالعالم لا يستطيع استعمال المنهج الرّياضي الاستنباطي في سائر العلوم إلاّ إذا سلب الواقع كثيراً من مضمونه.

فاللّغة الرّياضيّة توفّر للقوانين العلميّة مزيداً من الدّقّة، ومن أبرز الأمثلة على دور الرّياضيّات في علوم المادّة: قياس سرعة الرّياح، وقياس قوّة الزّلازل، وقياس الضّعط الجوّي.




الرياضيات فى علوم الأحياء

إنّ نجاح المنهج الاختباري في علوم الأحياء هيّأها لاستعمال اللّغة الرّياضية الرّائجة جدّاً في مجال العلوم الفيزيوكيميائيّة. ولقد عارض بعض العلماء هذا داعيين إلى الحذر وعدم إقحام الرّياضيّات في علوم الأحياء قبل أن تمرّ هذه الأخيرة بشكل واف ٍ على مشرحة التّحليل. فالعلم الّذي يبلغ مبلغاً كافياً من التّطوّر هو الّذي يمكن أن يطمح إلى هذه الدّرجة العلميّة الرّياضيّة.

و كان علم الوراثة الأوّل من علوم الأحياء الّذي اتّبع علوم المادّة في مسارها الرّياضي، وقد طُبّقت قوانين "مندل" في المجال الحيواني بقصد تأصيل بعض الحيوانات وعزل خصائص معيّنة كاللّون والشّكل والقدّ. وركّز العالم "مورغان" اختياراته على ذبابة الدّروزوفيل فتوصّل إلى تحديد الجينات الوراثيّة في كروموزومات نواة الخليّة.

إنّ علماء البيولوجيا يعتبرون الإحصاءات الرّياضيّة بمثابة استقصاء وشرح متميّز للمعطيات الطّبيّة. فإنّ قياس الثّوابت البيلوجيّة والتّسجيلات البيانيّة تشكّل لغة شائعة جدّاً في علوم الأحياء. فتخطيط الدماغ، وتخطيط القلب، وقياس نسبة الزُّلال، وقياس ثابة السكر في الدم، وإحصاء عدد كريات الدم الحمراء والبيضاء، وقياس النمو والوزن كلّها دلائل على دخول الرّياضيّات في علوم الأحياء.



الرّياضيّات في العلوم الإنسانيّة


إنّ العلوم الإنسانيّة هي الّتي تضمّ علم الاقتصاد، والإجتماع، والتاريخ، والنفس، والأخلاق وما سواها. فالمجتمعات الصناعية تعتمد على اللّغة الرّياضيّة من أجل تطوير الواقع الّتي تعيش فيه، فالاقتصاد يقوم على التّخطيط الّذي يُعتبر أسلوب للسيطرة على اقتصاد البلد ومحوره الأساسي الرّياضيّات. كذلك علم الإجتماع الّذي يرتكز على الاستبيان والجداول الإحصائيّة والخطوط البيانيّة أثناء دراسة لحالة فقر أو نسبة الهجرة السّكّانيّة إلى الخارج أو نسبة البطالة. أمّا بالنّسبة للتّاريخ، فالرّياضيّات تجعل عمليّة التّأريخ أكثر موضوعيّة ودقّة من خلال تحديد الفترة الزّمنيّة لحادثة ما وتدوين نتائجها على مختلف الصّعد. وتُستخدم اللّغة الرّقميّة في العديد من الدّراسات لعلم النّفس خاصّة عندى قياس الفروقات الفرديّة ونسبة الذكاء. غير أنّ الرّياضيّات لا تستطيع الدّخول على علم الأخلاق بسبب الموضوعات الّتي يحويها كالإرادة والضمير والحرية والمسؤولية والحق والواجب، فهي بالأمور المعنويّة الّتي لا يصحّ معها استعمال القياس أو الكمّ.




تقسيم أولى لفروع الرياضيات

من الرياضيات البحتة

من فروع المنطق :
المنطق المجرد.
الجبر المنطقي أو الجبر البولياني وينبع منه
منطق القضايا.
منطق الرتبة الأولى يحتوى هذا الفرع على القواعد والأصول اللازمة لصياغة نظريات الذكاء الاصطناعي وهو يعتمد بدوره على مبادئ المنطق البولياني ومنطق القضايا.
المنطق الوقتي.
المنطق الضبابي.
نظرية الاعتقاد.
المنطق القافي.
من فروع الرياضيات المتقطعة:
اللغات الشكلية ونظرية الآليات
نظرية المخططات وهي دراسة نظم ذات بنية شبكية وتتضمن على دراسة الشبكات وعبور المخططات والشجر وأطياف المخططات وغير ذلك.
نظرية المجموعات المبسطة.
نظرية الأعداد.
من فروع الجبر:
جبر الأعداد الحقيقية (الجبر والمقابلة للخوارزمي).
الجبر المجرد (يشتمل على القواعد المنطقية لحساب مختلف مجموعات الأعداد مثل حساب الأعداد الحقيقية والمركبة إلخ)
نظرية الزمر.
حساب المجموعات (الفئات).
حساب المتتاليات.
حساب المتجهات.
الجبر الخطي.
حساب المصفوفات.
جبر بول
ما وراء الرياضيات : ويشتمل ذلك على سبيل المثال على نظرية جودل وبحوث هيلبرت وبرتراند راسل حول تعريف وتبويب بنية الرياضات بأجمعها.
من فروع الهندسة:
الهندسة الإقليدية.
الهندسة الفراغية.
الهندسة الإسقاطية.
حساب المثلثات.
الهندسة التحليلية.
الهندسة الجبرية.
الهندسة التفاضلية.
الهندسة التضاريسية.
الهندسة التضاريسية لمجاميع النقاط.
الهندسة التضاريسية الجبرية.
نظرية العقد.
من فروع التحليل:
الحساب المتناهي (حساب التفاضل والتكامل).
المعادلات التفاضلية والمعادلات التكاملية.
تحليل الأعداد الحقيقية.
التحليل العددي.
التحليل التوافقي.
التحليل الدالي.
نظرية الدالات أو تحليل الدالات المركبة.
التحليل اللا-قياسي.
نظرية القياس.



من الرياضيات التطبيقية

نظرية الألعاب ولها تطبيقات في الاقتصاد وعلوم الإدارة والتخطيط.
علم الاحتمالات والإحصائيات.
علم النظم
نظرية الشواش والنظم اللا- خطية.
نظرية التحكم الآلي.
علوم الحاسبات الآلية:
نظرية الحوسبة.
تحليل الخوارزميات.
الذكاء الاصطناعي.
التعلم الآلى ويشتمل على
نظريات التعلم التواصلى والشبكات العصبية أو العصبونية.
نظريات التعلم التطورى: البرمجة والخوارزميات الوراثية والتطورية.
الإثبات الآلى للنظريات.
البحث المتوالى والمتوازي وفوز المباريات.
تصميم الدارات المنطقية.
علم المعلومات أو العلوم المعلوماتية.
علم إدارة نظم المعلومات.
علوم البرمجيات.
الاستمثال استمثال تعرف فروع هذا القسم بالبرمجة للإشارة إلى أن المراد هي إيجاد أدنى حلول للمعادلات تحت التحليل مثلا تحليل سيمبلكس.
البرمجة الخطية.
البرمجة الكاملة.
البرمجة المتحركة.
بحوث العمليات.
علوم الطبيعة الرياضياتية : وتشمل على فروع العلوم والنظريات الطبيعية التي تعتمد بالأساس في صياغتها على التحليل والبرهنة الرياضية أكثر من قياس التجارب والظواهر الطبيعية ومنها
نظرية الكم أو النظرية الكمومية أو علم الحركيات الكمية.
الميكانيكا أو الحركيات الإحصائية.
ومنها أيضا دراسة حلول الدالات المجهولة في التصميم الهندسي والصناعي والتي تعتمد على حساب المعادلات التفاضلية التي تصف النظم تحت التصميم.
ميكانيكا هاملتون.
التحليل العددي.
علم الشفرات.



تقسيم فروع الرياضيات حول موضوع الدراسة الأساسي

الكمية

أعداد طبيعية أعداد صحيحة أعداد كسرية

أعداد حقيقية أعداد مركبة أو عقدية

عدد – عدد طبيعي – عدد صحيح – عدد كسري – عدد حقيقي – عدد عقدي – عدد فوق عقدي – كواتيرنيون – اوكتونيون – سيدينيون – عدد فوق حقيقي – عدد حقيقي فائق – عدد ترتيبي – عدد كمي – عدد بي – متوالية صحيحة – ثابت رياضي – أسماء الأعداد – اللانهاية – الأساس (رياضيات)
التغير


حساب تكامل


تكامل شعاعي

تحليل رياضي معادلات تفاضلية



جمل متحركة (ديناميكية) نظرية الشواش

الحساب – علم الحسبان – الحسبان الشعاعي – التحليل الرياضي – معادلات تفاضلية – جمل متحركة – نظرية الشواش – قائمة الدوال (التوابع)
[عدل] البنية
جبر تجريدي – نظرية الأعداد – هندسة جبرية – نظرية المجموعات – مونويد – التحليل الرياضي – الطوبولوجيا – الجبر الخطي – نظرية المخططات – الجبر الشامل – نظرية الزمر – نظرية الترتيب – نظرية القياس
العلاقات الفراغية



طوبولوجيا هندسة رياضية


هندسة تفاضلية علم المثلثات


هندسة كسيرية

طوبولوجيا – هندسة رياضية – علم المثلثات – هندسة جبرية – هندسة تفاضلية – طبولوجيا تفاضلية – طوبولوجيا جبرية – جبر خطي – هندسة كسيرية
[عدل] الرياضيات المتقطعة

نظرية المجموعات المبسطة نظرية الحوسبة

علم التعمية نظرية المخططات

التوافقيات – نظرية المجموعات المبسطة – نظرية الحوسبة– علم التعمية –
[ رياضيات تطبيقية
الميكانيك – تحليل عددي – استمثال رياضي – احتمال – إحصاء – رياضيات اقتصادية – نظرية الألعاب – البيولوجيا الرياضية – علم التعمية – نظرية المعلومات – ميكانيك السوائل
المبرهنات والحدسيات الهامة


مبرهنة فيثاغورث – مبرهنة طاليس –مبرهنة الكاشي –مبرهنة فيرما الأخيرة – حدسية غولدباخ – حدسية التوأمين الأولية – مبرهنة عدم الاكتمال لغودل – حدسية بوانكاريه – قطر كانتور – مبرهنة الألوان الأربعة – قضية زورن المساعدة – هوية اويلر – أطروحة تشرش-تورينغ
فرضية ريمان – فرضية الاستمرارية – P=NP – مبرهنة الحد المركزية – المبرهنة الأساسية في التكامل – المبرهنة الأساسية في الجبر – المبرهنة الأساسية في الحساب – المبرهنة الأساسية في الهندسة الإسقاطية – مبرهنات تصنيف السطوح – مبرهنة غاوس-بونيت



ed]بعض أعلام الرياضيات


من أهم مطورى الرياضيات القديمة والحديثة : إقليدس ارخميدس فيثاغورس طاليس الخوارزمي إسحاق نيوتن غوتفريد لايبنتز لابلاس بليز باسكال هنري بوانكاريه جاوس ديفيد هيلبرت ستيفن باناخ ابن الهيثم مايكل عطية ليونارد أويلر كورت غودل جون فون نيومان برنارد ريمان رينيه ديكارت جورج كانتور جورج بول عمر الخيام إيمي نويثر






[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
تاريخ الرياضيات
استعرض الموضوع السابق استعرض الموضوع التالي الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى علوم المنصورة :: واحة العِلم :: علم الرياضيات :: علم الرياضيات-
انتقل الى: