منتدى علوم المنصورة
منتدى علوم المنصورة

اهلا بك يا زائر لديك 16777214 مساهمة
 
الرئيسيةالبوابةس .و .جبحـثالتسجيلدخول

شاطر | 
 

 Poisson distribution ( توزيع بواسون )

استعرض الموضوع السابق استعرض الموضوع التالي اذهب الى الأسفل 
كاتب الموضوعرسالة
kamar_ellel
عالم مشرفنا

عالم مشرفنا


عدد المساهمات : 1009
العمر : 29
العمل/الترفيه : دراسات عليا أحصاء وعلوم الحاسب
المزاج : الحمد لله ماشى الحال
الألتزام بقوانين المنتدى :

مُساهمةموضوع: Poisson distribution ( توزيع بواسون )   الإثنين مارس 09, 2009 1:36 pm



[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذا الرابط]

Related distributions




  • If [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] and [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] then the difference Y = X1X2 follows a Skellam distribution.
  • If [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] and [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] are independent, and Y = X1 + X2, then the distribution of X1 conditional on Y = y is a binomial. Specifically, [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]. More generally, if X1, X2,..., Xn are independent Poisson random variables with parameters λ1, λ2,..., λn then [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
  • The Poisson distribution can be derived as a limiting case to the binomial distribution as the number of trials goes to infinity and the expected number of successes remains fixed. Therefore it can be used as an approximation of the binomial distribution if n is sufficiently large and p is sufficiently small. There is a rule of thumb stating that the Poisson distribution is a good approximation of the binomial distribution if n is at least 20 and p is smaller than or equal to 0.05. According to this rule the approximation is excellent if n ≥ 100 and np ≤ 10.[1]
  • For sufficiently large values of λ, (say λ>1000), the normal distribution with mean λ, and variance λ, is an excellent approximation to the Poisson distribution. If λ is greater than about 10, then the normal distribution is a good approximation if an appropriate continuity correction is performed, i.e., P(Xx), where (lower-case) x is a non-negative integer, is replaced by P(Xx + 0.5).




[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]


  • Variance stabilizing transformation: When a variable is Poisson distributed, its square root is approximately normally distributed with expected value of about [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] and variance of about 1/4.[2] Under this transformation, the convergence to normality is far faster than the untransformed variable. Other, slightly more complicated, variance stabilizing transformations are available,[3] one of which is Anscombe transform. See Data transformation (statistics) for more general uses of transformations.
  • If the number of arrivals in a given time interval [0,t] follows the Poisson distribution, with mean = λt, then the lengths of the inter-arrival times follow the Exponential distribution, with mean 1 / λ.
[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذا الرابط]

Occurrence


The Poisson distribution arises in connection with Poisson processes. It applies to various phenomena of discrete nature (that is, those that may happen 0, 1, 2, 3, ... times during a given period of time or in a given area) whenever the probability of the phenomenon happening is constant in time or space. Examples of events that may be modelled as a Poisson distribution include:


  • The number of soldiers killed by horse-kicks each year in each corps in the Prussian cavalry. This example was made famous by a book of Ladislaus Josephovich Bortkiewicz (1868–1931).
  • The number of phone calls at a call centre per minute.
  • Under an assumption of homogeneity, the number of times a web server is accessed per minute.
  • The number of mutations in a given stretch of DNA after a certain amount of radiation.
[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذا الرابط]

How does this distribution arise? — The law of rare events


In several of the above examples—for example, the number of mutations in a given sequence of DNA—the events being counted are actually the outcomes of discrete trials, and would more precisely be modelled using the binomial distribution. However, the binomial distribution with parameters n and λ/n, i.e., the probability distribution of the number of successes in n trials, with probability λ/n of success on each trial, approaches the Poisson distribution with expected value λ as n approaches infinity. This provides a means by which to approximate random variables using the Poisson distribution rather than the more-cumbersome binomial distribution.
This limit is sometimes known as the law of rare events, since each of the individual Bernoulli events rarely triggers. The name may be misleading because the total count of success events in a Poisson process need not be rare if the parameter λ is not small. For example, the number of telephone calls to a busy switchboard in one hour follows a Poisson distribution with the events appearing frequent to the operator, but they are rare from the point of the average member of the population who is very unlikely to make a call to that switchboard in that hour.
The proof may proceed as follows. First, recall from calculus


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
and the definition of the Binomial distribution


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
If the binomial probability can be defined such that p = λ / n, we can evaluate the limit of P as n goes large:


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
The F term can be written as
[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
and then note that, since k is fixed, this is a rational function of n with limit 1.
Consequently, the limit of the distribution becomes


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
which now assumes the Poisson distribution.
More generally, whenever a sequence of independent binomial random variables with parameters n and pn is such that


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]


the sequence converges in distribution to a Poisson random variable with mean λ (see, e.g. law of rare events


).

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذا الرابط]

الرجوع الى أعلى الصفحة اذهب الى الأسفل
kamar_ellel
عالم مشرفنا

عالم مشرفنا


عدد المساهمات : 1009
العمر : 29
العمل/الترفيه : دراسات عليا أحصاء وعلوم الحاسب
المزاج : الحمد لله ماشى الحال
الألتزام بقوانين المنتدى :

مُساهمةموضوع: رد: Poisson distribution ( توزيع بواسون )   الإثنين مارس 09, 2009 1:37 pm

Properties





  • The expected value of a Poisson-distributed random variable is equal to λ and so is its variance. The higher moments of the Poisson distribution are Touchard polynomials in λ, whose coefficients have a combinatorial meaning. In fact, when the expected value of the Poisson distribution is 1, then Dobinski's formula says that the nth moment equals the number of partitions of a set of size n.


  • The mode of a Poisson-distributed random variable with non-integer λ is equal to [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة], which is the largest integer less than or equal to λ. This is also written as floor(λ). When λ is a positive integer, the modes are λ and λ − 1.


  • Sums of Poisson-distributed random variables:


If [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] follow a Poisson distribution with parameter [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] and Xi are independent, then [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] also follows a Poisson distribution whose parameter is the sum of the component parameters.


  • The moment-generating function of the Poisson distribution with expected value λ is




[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]


  • All of the cumulants of the Poisson distribution are equal to the expected value λ. The nth factorial moment of the Poisson distribution is λn.


  • The Poisson distributions are infinitely divisible probability distributions.


  • The directed Kullback-Leibler divergence between Pois(λ) and Pois(λ0) is given by




[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذا الرابط]

Generating Poisson-distributed random variables


A simple way to generate random Poisson-distributed numbers is given by Knuth, see References below.
algorithm poisson random number (Knuth):
init:
Let L ← e−λ, k ← 0 and p ← 1.
do:
k ← k + 1.
Generate uniform random number u in [0,1] and let p ← p × u.
while p ≥ L.
return k − 1.

While simple, the complexity is linear in λ. There are many other algorithms to overcome this. Some are given in Ahrens & Dieter, see References below.
[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذا الرابط]

Parameter estimation


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذا الرابط]

Maximum likelihood


Given a sample of n measured values ki we wish to estimate the value of the parameter λ of the Poisson population from which the sample was drawn. To calculate the maximum likelihood value, we form the log-likelihood function


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
Take the derivative of L with respect to λ and equate it to zero:


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
Solving for λ yields the maximum-likelihood estimate of λ:


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
Since each observation has expectation λ so does this sample mean. Therefore it is an unbiased estimator of λ. It is also an efficient estimator, i.e. its estimation variance achieves the Cramér-Rao lower bound (CRLB).
[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذا الرابط]

Bayesian inference


In Bayesian inference, the conjugate prior for the rate parameter λ of the Poisson distribution is the Gamma distribution. Let


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
denote that λ is distributed according to the Gamma density g parameterized in terms of a shape parameter α and an inverse scale parameter β:


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
Then, given the same sample of n measured values ki as before, and a prior of Gamma(α, β), the posterior distribution is


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
The posterior mean E[λ] approaches the maximum likelihood estimate [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] in the limit as [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة].
The posterior predictive distribution of additional data is a Gamma-Poisson (i.e. negative binomial) distribution.
الرجوع الى أعلى الصفحة اذهب الى الأسفل
مسلمة
عالم مش ساكت

عالم مش ساكت


عدد المساهمات : 129
العمر : 27
الألتزام بقوانين المنتدى :
الكليه : علوم
الفرقه والقسم : بكالريوس احصاء وعلوم الحاسب

مُساهمةموضوع: رد: Poisson distribution ( توزيع بواسون )   الإثنين مارس 09, 2009 4:28 pm

مش عارفه بجد اشكرك ازاى يا قمر

مقدرش اقول لك غير ربنا يجعله فى ميزان حسناتك ان شاء الله

الرجوع الى أعلى الصفحة اذهب الى الأسفل
kamar_ellel
عالم مشرفنا

عالم مشرفنا


عدد المساهمات : 1009
العمر : 29
العمل/الترفيه : دراسات عليا أحصاء وعلوم الحاسب
المزاج : الحمد لله ماشى الحال
الألتزام بقوانين المنتدى :

مُساهمةموضوع: رد: Poisson distribution ( توزيع بواسون )   الأربعاء مارس 11, 2009 10:00 pm

ميرسي لمرورك الجميل
بس انا هنا عشان احاول اساعدكو
وكمان انا تحت امركوا في اي وقت
ومادام اقدر اساعد هساعد
بالقدر المستطاع
الرجوع الى أعلى الصفحة اذهب الى الأسفل
مسلمة
عالم مش ساكت

عالم مش ساكت


عدد المساهمات : 129
العمر : 27
الألتزام بقوانين المنتدى :
الكليه : علوم
الفرقه والقسم : بكالريوس احصاء وعلوم الحاسب

مُساهمةموضوع: رد: Poisson distribution ( توزيع بواسون )   الجمعة مارس 13, 2009 12:00 am

اللهم اغفر لها ما تقدم من ذنبها وما تأخر وقها عذاب القبر وعذاب النار وادخلها الجنة واستجب دعائها فى الدنيا والأخرة
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
Poisson distribution ( توزيع بواسون )
استعرض الموضوع السابق استعرض الموضوع التالي الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1
 مواضيع مماثلة
-
» مصطلحات علمية تفيد المهندسين
» CHI-SQUARE TEST كاي سكوير التعريف والخطوات مترجم من العربية إلي الإنجليزية

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى علوم المنصورة :: واحة العِلم :: علم الرياضيات :: الاحصاء-
انتقل الى: