منتدى علوم المنصورة

شاطر
استعرض الموضوع السابقاذهب الى الأسفلاستعرض الموضوع التالي
avatar
kamar_ellel
عالم مشرفنا

عالم مشرفنا
عدد المساهمات : 1009
العمر : 30
العمل/الترفيه : دراسات عليا أحصاء وعلوم الحاسب
المزاج : الحمد لله ماشى الحال
الألتزام بقوانين المنتدى :

التوزيع الاحتمالي (Probability distribution)

في الإثنين سبتمبر 29, 2008 4:42 am
يقوم التوزيع الاحتمالي باعطاء كل مجال من الأعداد الحقيقية احتمالا معينا بحيث تتحقق فرضيات الإحتمال . و بكلام آخر هو قياس احتمالي مجاله تطبيق [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذا الرابط] على مجموعة الأعداد الحقيقية .
التوزيع الإحتمالي يعتبر حالة خاصة من مصطلح أكثر عمومية هو [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذا الرابط] ، الذي يعتبر دالة تربط قيم احتمالات بمجموعات مقيسة من [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذا الرابط] بحيث تحقق [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذا الرابط] .
كل متغير عشوائي ينشأعنه توزيع احتمالي يحتوي معظم المعلومات المهمة عن هذا المتغير . فاذا كان المتغير X متغيرا عشوائيا فان التوزيع الاحتمالي الموافق له ينسب للمجال [a, b] احتمالا : بمعنى أن احتمال أن يأخذ المتغير X قيمة ضمن المجال هي : Pr[aXb] .
يمكن وصف التوزيع الاحتمالي للمتغير عن طريق دالة التوزيع التراكمي التي تعرف كما يلي :


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]

نقول عن توزيع احتمالي أنه منقطع اذا كانت دال التوزيع التراكمي له مؤلف من تسلسل قفزات متناهية ، مما يعني أنه يعود لمتغير عشوائي متقطع ، و هو بالتعريف متغير يمكنه أن يأخذ فقط قيما من مجموعة محددة منتهية و قابلة للعد . و نقول عن التوزيع الاحتمالي أنه مستمر اذا كان دالة التوزيع التراكمي له مستمرة أي أنها تعود لمتغير عشوائي احتمال أخذه لقيمة محددة معينة معدوما أي : Pr[ X = x ] = 0 أيا كانت x من مجموعة الأعداد الحقيقية ، في مثل هذه الحالة لا وجود لاحتمال غير معدوم الا من أجل مجال ضمن مجموعة الأعداد الحقيقية اما ان يأخذ المتغير قيمة محددة فهو أمر عديم الإحتمال .
هذه التوزيعات المستمرة المطلقة يمكن التعبير عنها بوساطة : دوال الكثاقة الاحتمالية : و هو عبارة عن دالة قابلة للتكامل بطريقة ليبيزغو ، موجبة حتما و معرفة على مجموعة الأعداد الحقيقية :


[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
استعرض الموضوع السابقالرجوع الى أعلى الصفحةاستعرض الموضوع التالي
صلاحيات هذا المنتدى:
لاتستطيع الرد على المواضيع في هذا المنتدى